Correction - Exercice 06 page 180 - Activités algébriques
Développons et réduisons les expressions suivantes
a) (√2–12)(2+√22+14).
(√2–12)(2+√22+14)
=2√2+√2×√22+√2×14−22−1×√22×2−1×12×4
=2√2+22+√24−22−√24−18
=2√2−18
b) (13a–25b)(13a+25b).
(13a–25b)(13a+25b)
=(13a)2–(25b)2
=19a2–425b2
c) (2a–1)2−(2a+1)(3a+5).
(2a–1)2−(2a+1)(3a+5)
=2.2a2−2.2a.1+12−(2a×3a+2a×5+1×3a+1×5)
=4a2−4a+1−(6a2+10a+3a+5)
=4a2−4a+1−(6a2+13a+5)
=4a2−4a+1−6a2−13a−5)
=−2a2−17a−4
d) (2x–1)3+3(2x–1)2(1−x)+3(2x–1)(1–x)2+(1–x)3.
(2x–1)3+3(2x–1)2(1−x)+3(2x–1)(1–x)2+(1–x)3
=((2x−1)+(1−x))3
a) (√2–12)(2+√22+14).
(√2–12)(2+√22+14)
=2√2+√2×√22+√2×14−22−1×√22×2−1×12×4
=2√2+22+√24−22−√24−18
=2√2−18
b) (13a–25b)(13a+25b).
(13a–25b)(13a+25b)
=(13a)2–(25b)2
=19a2–425b2
c) (2a–1)2−(2a+1)(3a+5).
(2a–1)2−(2a+1)(3a+5)
=2.2a2−2.2a.1+12−(2a×3a+2a×5+1×3a+1×5)
=4a2−4a+1−(6a2+10a+3a+5)
=4a2−4a+1−(6a2+13a+5)
=4a2−4a+1−6a2−13a−5)
=−2a2−17a−4
d) (2x–1)3+3(2x–1)2(1−x)+3(2x–1)(1–x)2+(1–x)3.
(2x–1)3+3(2x–1)2(1−x)+3(2x–1)(1–x)2+(1–x)3
=((2x−1)+(1−x))3
=(2x−1+1−x)3
=x3
e) (2−34t)2+(14t+1)2.
(2−34t)2+(14t+1)2
=22−2×2×34t+(34t)2+(14t)2+2×14t×1+12
=4−124t+916t2+116t2+24t+1
=1016t2−104t+5
=58t2−52t+5
f) (x–2)(x+3)(x2−1)–(x3+2x)(x–6).
(x–2)(x+3)(x2−1)–(x3+2x)(x–6)
=(x2+3x−2x−6)(x2−1)−(x4−6x3+2x2−12x)
=(x2+x−6)(x2−1)−x4+6x3−2x2+12x)
=x4−x2+x3−x−6x2+6−x4+6x3−2x2+12x
=7x3−9x2+11x+6
g) (π+x)3–3π(π+x)+2π3–x3.
(π+x)3–3π(π+x)+2π3–x3
=π3+3π2x+3πx2+x3−3π2−3πx+2π3−x3
=3π3+3π2x+3πx2−3π2−3πx
Libellés:
1ère année secondaire
Activités algébriques
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Aucun commentaire: