Correction - Exercice 08 page 181 - Activités algébriques
Recopions et relions par une flèche chaque expression à son écriture factorisée :
* \((7x+3)(x-5)-7x-3\).
\((7x+3)(x-5)-7x-3=\)
\((7x+3)(x-5)-(7x+3)=\)
\((7x+3)((x-5)-1)=\)
\((7x+3)(x-6)\)
* \((-2x+3)^2-16\).
\((-2x+3)^2-16=\)
\((-2x+3)^2-4^2=\)
\((-2x+3+4)(-2x+3-4)=\)
\((-2x+7)(-2x+-1)\)
* \((7x+3)(x-5)-7x-3\).
\((7x+3)(x-5)-7x-3=\)
\((7x+3)(x-5)-(7x+3)=\)
\((7x+3)((x-5)-1)=\)
\((7x+3)(x-6)\)
* \((-2x+3)^2-16\).
\((-2x+3)^2-16=\)
\((-2x+3)^2-4^2=\)
\((-2x+3+4)(-2x+3-4)=\)
\((-2x+7)(-2x+-1)\)
\(x^2-1+(x+1)(x-3)\).
\(x^2-1+(x+1)(x-3)=\)
\(x^2-1^2+(x+1)(x-3)=\)
\((x+1)(x-1)+(x+1)(x-3)=\)
\((x+1)(x-1+x-3)=\)
\((x+1)(2x-4)=\)
\((x+1)\times2(x-2)=\)
\(2(x+1)(x-2)\)
\(x^2-1+(x+1)(x-3)=\)
\(x^2-1^2+(x+1)(x-3)=\)
\((x+1)(x-1)+(x+1)(x-3)=\)
\((x+1)(x-1+x-3)=\)
\((x+1)(2x-4)=\)
\((x+1)\times2(x-2)=\)
\(2(x+1)(x-2)\)
* \(\frac{25}{16}x^2-\frac{1}{2}\).
\(\frac{25}{16}x^2-\frac{1}{2}=\)
\((\frac{5}{4}x)^2-(\frac{1}{\sqrt{2}})^2=\)
\((\frac{5}{4}x)^2-(\frac{\sqrt{2}}{2})^2=\)
\((\frac{5}{4}x-\frac{\sqrt{2}}{2})(\frac{5}{4}x+\frac{\sqrt{2}}{2})\)
* \((\sqrt{2}+1)^3\).
\((\sqrt{2}+1)^3=\)
\((\sqrt{2})^3+3.(\sqrt{2})^2.1+3.\sqrt{2}.1^2+1^3=\)
\(2\sqrt{2}+6+3\sqrt{2}+1=\)
\(2\sqrt{2}+7+3\sqrt{2}\)
* \(x^6+22x^3+121\).
\(x^6+22x^3+121=\)
\((x^3)^2+2.11.x^3+11^2=\)
\((x^3+11)^2\)
* \(4-(2-x)^2\).
\((x^3)^2+2.11.x^3+11^2=\)
\((x^3+11)^2\)
* \(4-(2-x)^2\).
\(4-(2-x)^2=\)
\(2^2-(2-x)^2=\)
\((2-(2-x))(2+(2-x))=\)
\((2-2+x)(2+2-x)=\)
\((x)(4-x)\)
Conclusion :
Libellés:
1ère année secondaire
Activités algébriques
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Aucun commentaire: