Correction - Exercice 01 page 46 - Rapports trigonométriques d'un angle aigu - Relations métriques dans un triangle rectangle
Déterminons dans chacun des cas suivants \(x\) et \(y\) sachant que le triangle \(ABC\) est rectangle en \(A\).
* 1er cas :
- Cherchons \(x\)
On a :
\(cos~\widehat{ABC} = \frac{AB}{BC}\)\(\Rightarrow\)
\(cos~30° = \frac{x}{1}\)\(\Rightarrow\)
\(x = cos~30°\)\(\Rightarrow\)
\(x = \frac{\sqrt{3}}{2}\)
- Cherchons \(y\)
On a :
\(AB^2+AC^2=BC^2\)\(\Rightarrow\)
\(x^2+y^2=1^2\)\(\Rightarrow\)
\((\frac{\sqrt{3}}{2})^2+y^2=1\)\(\Rightarrow\)
\(y^2=1-(\frac{\sqrt{3}}{2})^2\)\(\Rightarrow\)
\(y^2=1-\frac{3}{4}\)\(\Rightarrow\)
\(y^2=\frac{4}{4}-\frac{3}{4}\)\(\Rightarrow\)
\(y^2=\frac{1}{4}\)\(\Rightarrow\)
\(y=\sqrt{\frac{1}{4}}\)\(\Rightarrow\)
\(y^2=1-\frac{3}{4}\)\(\Rightarrow\)
\(y^2=\frac{4}{4}-\frac{3}{4}\)\(\Rightarrow\)
\(y^2=\frac{1}{4}\)\(\Rightarrow\)
\(y=\sqrt{\frac{1}{4}}\)\(\Rightarrow\)
\(y=\) \(\frac{1}{2}\)
\(x = \frac{1}{sin~30°}\)\(\Rightarrow\)
\(x = \frac{1}{\frac{1}{2}}\)\(\Rightarrow\)
\(x = \)\(2\)
- Cherchons \(y\)
On a :
\(AB^2+AC^2=BC^2\)\(\Rightarrow\)
* 2ème cas :
- Cherchons \(x\)
On a :
\(sin~\widehat{BCA} = \frac{AB}{BC}\)\(\Rightarrow\)
\(sin~30° = \frac{1}{x}\)\(\Rightarrow\)
On a :
\(sin~\widehat{BCA} = \frac{AB}{BC}\)\(\Rightarrow\)
\(sin~30° = \frac{1}{x}\)\(\Rightarrow\)
\(x = \frac{1}{sin~30°}\)\(\Rightarrow\)
\(x = \frac{1}{\frac{1}{2}}\)\(\Rightarrow\)
\(x = \)\(2\)
- Cherchons \(y\)
On a :
\(AB^2+AC^2=BC^2\)\(\Rightarrow\)
\(x^2+y^2=2^2\)\(\Rightarrow\)
\(1^2+y^2=4\)\(\Rightarrow\)
\(y^2=4-1\)\(\Rightarrow\)
\(y^2=3\)\(\Rightarrow\)
\(y=\) \(\sqrt{3}\)
\(x = \frac{1}{cos~60°}\)\(\Rightarrow\)
\(x = \frac{1}{\frac{1}{2}}\)\(\Rightarrow\)
\(x = \)\(2\)
- Cherchons \(y\)
On a :
\(AB^2+AC^2=BC^2\)\(\Rightarrow\)
\(y^2=3\)\(\Rightarrow\)
\(y=\) \(\sqrt{3}\)
* 3ème cas :
- Cherchons \(x\)
On a :
\(cos~\widehat{BCA} = \frac{AC}{BC}\)\(\Rightarrow\)
\(cos~60° = \frac{1}{x}\)\(\Rightarrow\)
On a :
\(cos~\widehat{BCA} = \frac{AC}{BC}\)\(\Rightarrow\)
\(cos~60° = \frac{1}{x}\)\(\Rightarrow\)
\(x = \frac{1}{cos~60°}\)\(\Rightarrow\)
\(x = \frac{1}{\frac{1}{2}}\)\(\Rightarrow\)
\(x = \)\(2\)
- Cherchons \(y\)
On a :
\(AB^2+AC^2=BC^2\)\(\Rightarrow\)
\(x^2+y^2=2^2\)\(\Rightarrow\)
\(1^2+y^2=4\)\(\Rightarrow\)
\(y^2=4-1\)\(\Rightarrow\)
\(y^2=3\)\(\Rightarrow\)
\(y=\) \(\sqrt{3}\)
\(y^2=3\)\(\Rightarrow\)
\(y=\) \(\sqrt{3}\)
Libellés:
1ère année secondaire
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Mathématiques
Rapports trigonométriques d'un angle aigu
Relations métriques dans un triangle rectangle
Aucun commentaire: