Correction - Exercice 03 page 180 - Activités algébriques
Montrons que lorsque \(x =\)\(\frac{1 –\sqrt{5}}{2}\) l'expression \(x^2 – x – 1=0\).
Lorsque \(x =\)\(\frac{1–\sqrt{5}}{2}\) :
\(x2–x–1=\) \((\frac{1–\sqrt{5}}{2})^2-(\frac{1–\sqrt{5}}{2})-\)\(1\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{(1–\sqrt{5})^2}{2^2}-\frac{1–\sqrt{5}}{2}-\)\(1\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1^2–2.\sqrt{5}.1+\sqrt{5}^2}{4}-\frac{2\times(1 –\sqrt{5})}{4}-\frac{4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1–2\sqrt{5}+5}{4}-\frac{2–2\sqrt{5}}{4}-\frac{4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1-2\sqrt{5}+5-2+2\sqrt{5}-4}{4}\) \(\Rightarrow\)
\(x2–x–1=\) \(\frac{1+5-2-4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{0}{4}\)\(\Rightarrow\)
\(x2–x–1=0\)
Conclusion :
Lorsque \(x =\)\(\frac{1 –\sqrt{5}}{2}\) l'expression \(x^2 – x – 1\) est nulle.
Lorsque \(x =\)\(\frac{1–\sqrt{5}}{2}\) :
\(x2–x–1=\) \((\frac{1–\sqrt{5}}{2})^2-(\frac{1–\sqrt{5}}{2})-\)\(1\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{(1–\sqrt{5})^2}{2^2}-\frac{1–\sqrt{5}}{2}-\)\(1\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1^2–2.\sqrt{5}.1+\sqrt{5}^2}{4}-\frac{2\times(1 –\sqrt{5})}{4}-\frac{4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1–2\sqrt{5}+5}{4}-\frac{2–2\sqrt{5}}{4}-\frac{4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{1-2\sqrt{5}+5-2+2\sqrt{5}-4}{4}\) \(\Rightarrow\)
\(x2–x–1=\) \(\frac{1+5-2-4}{4}\)\(\Rightarrow\)
\(x2–x–1=\) \(\frac{0}{4}\)\(\Rightarrow\)
\(x2–x–1=0\)
Conclusion :
Lorsque \(x =\)\(\frac{1 –\sqrt{5}}{2}\) l'expression \(x^2 – x – 1\) est nulle.
Libellés:
1ère année secondaire
Activités algébriques
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Aucun commentaire: