Correction - Exercice 17 page 182 - Activités algébriques
Soit \(x\) un réel et \(A(x)=(x+6)^2-(x-6)^2\)
1- Factorisons \(A(x)\).
\(A(x)=(x+6)^2-(x-6)^2\) \(\Rightarrow\)
\(A(x)=((x+6)+(x-6))((x+6)-(x-6))\) \(\Rightarrow\)
\(A(x)=(x+6+x-6)(x+6-x+6)\) \(\Rightarrow\)
\(A(x)=2x\times12\) \(\Rightarrow\)
\(A(x)=24.x\)
2- En déduisons la valeur de \(B=1000006^2–999994^2\).
\(B=1000006^2 – 999994^2\) \(\Rightarrow\)
\(B=(1000000+6)^2–(1000000-6)^2\) \(\Rightarrow\)
\(B=(10^6+6)^2–(10^6-6)^2\) \(\Rightarrow\)
\(B=(10^6+6+10^6-6)(10^6+6-(10^6-6))\) \(\Rightarrow\)
\(B=(10^6+10^6)(10^6+6-10^6+6)\) \(\Rightarrow\)
\(B=2\times10^6\times12\) \(\Rightarrow\)
\(B=24.10^6\)
3- Calculons \(2003^2-1997^2\).
\(2003^2-1997^2\) \(\Rightarrow\)
\(B=(2000+3)^2–(2000-3)^2\) \(\Rightarrow\)
\(B=(2.10^3+3)^2–(2.10^3-3)^2\) \(\Rightarrow\)
\(B=(2.10^3+3+2.10^3-3)(2.10^3+3-(2.10^3-3))\) \(\Rightarrow\)
\(B=(2.10^3+2.10^3)(2.10^3+3-2.10^3+3)\) \(\Rightarrow\)
\(B=2\times2.10^3\times6\) \(\Rightarrow\)
\(B=24.10^3\).
1- Factorisons \(A(x)\).
\(A(x)=(x+6)^2-(x-6)^2\) \(\Rightarrow\)
\(A(x)=((x+6)+(x-6))((x+6)-(x-6))\) \(\Rightarrow\)
\(A(x)=(x+6+x-6)(x+6-x+6)\) \(\Rightarrow\)
\(A(x)=2x\times12\) \(\Rightarrow\)
\(A(x)=24.x\)
2- En déduisons la valeur de \(B=1000006^2–999994^2\).
\(B=1000006^2 – 999994^2\) \(\Rightarrow\)
\(B=(1000000+6)^2–(1000000-6)^2\) \(\Rightarrow\)
\(B=(10^6+6)^2–(10^6-6)^2\) \(\Rightarrow\)
\(B=(10^6+6+10^6-6)(10^6+6-(10^6-6))\) \(\Rightarrow\)
\(B=(10^6+10^6)(10^6+6-10^6+6)\) \(\Rightarrow\)
\(B=2\times10^6\times12\) \(\Rightarrow\)
\(B=24.10^6\)
3- Calculons \(2003^2-1997^2\).
\(2003^2-1997^2\) \(\Rightarrow\)
\(B=(2000+3)^2–(2000-3)^2\) \(\Rightarrow\)
\(B=(2.10^3+3)^2–(2.10^3-3)^2\) \(\Rightarrow\)
\(B=(2.10^3+3+2.10^3-3)(2.10^3+3-(2.10^3-3))\) \(\Rightarrow\)
\(B=(2.10^3+2.10^3)(2.10^3+3-2.10^3+3)\) \(\Rightarrow\)
\(B=2\times2.10^3\times6\) \(\Rightarrow\)
\(B=24.10^3\).
Libellés:
1ère année secondaire
Activités algébriques
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Aucun commentaire: