Correction - Exercice 07 page 180 - Activités algébriques
Factorisons les expressions suivantes :
a) x225−y216.
x225−y216=
(x5)2−(y4)2=
(x5−y4)(x5+y4)a2−b2=(a−b)(a+b)
b) (7√2x)2−14√2.x.y+y2.
a) x225−y216.
x225−y216=
(x5)2−(y4)2=
(x5−y4)(x5+y4)a2−b2=(a−b)(a+b)
b) (7√2x)2−14√2.x.y+y2.
(7√2x)2−14√2.x.y+y2=
(7√2x−y)2
(a−b)2=a2−2.a.b+b2
c) (2t–1)3+8.
(2t–1)3+8=(2t–1)3+23=
(2t−1+2)((2t–1)2−2(2t−1)+22)=
(2t+1)((4t2−2×2t×1+1)−2(2t)+4)=
(2t+1)(4t2−4t+1−4t+2+4)=
(2t+1)(4t2−8t+7)
a3+b3=(a+b)(a2−ab+b2)
d) (32k+12)3+64.
(32k+12)3+64=(32k+12)3+43=
((32k+12)+4)((32k+12)2−4(32k+12)+42)=
d) (32k+12)3+64.
(32k+12)3+64=(32k+12)3+43=
((32k+12)+4)((32k+12)2−4(32k+12)+42)=
(32k+92)((94k2+64k+14)−122k+42+16)=
(32k+92)(94k2−92k−74+16)=
(32k+92)(94k2−92k+574)
(32k+92)(94k2−92k+574)
a3+b3=(a+b)(a2−ab+b2)
e) x4–x2+14.
x4–x2+14=
(x2)2−2×12×x2+(12)2=
e) x4–x2+14.
x4–x2+14=
(x2)2−2×12×x2+(12)2=
(x2−12)2
a2−2.a.b+b2=(a−b)2
f) 27×10−3+27×10−4+9×10−5+10−6.
1728x3−8125=
(12x)3−(25)3=
(12x−25)((12x)2+12x×25+(25)2)=
(12x−25)(144x2+245x+425)
h) π3+3π2+3π+1.
f) 27×10−3+27×10−4+9×10−5+10−6.
27×10−3+27×10−4+9×10−5+10−6=
(3×10−1)3+3×(3×10−1)2×10−2+3×(3×10−1)×(10−2)2+(10−2)3=
((3×10−1)+10−2)3
a3+3.a2.b+3.a.b2+b3=(a+b)3
g) 1728x3–8125.
(3×10−1)3+3×(3×10−1)2×10−2+3×(3×10−1)×(10−2)2+(10−2)3=
((3×10−1)+10−2)3
a3+3.a2.b+3.a.b2+b3=(a+b)3
g) 1728x3–8125.
1728x3−8125=
(12x)3−(25)3=
(12x−25)((12x)2+12x×25+(25)2)=
(12x−25)(144x2+245x+425)
h) π3+3π2+3π+1.
π3+3π2+3π+1=
π3+3.π2.1+3.π.12+13=
(π+1)3
Libellés:
1ère année secondaire
Activités algébriques
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Aucun commentaire: