Exercice 01 page 237 - Systèmes de deux équations à deux inconnues
Résoudre chacun des systèmes
* \(\left\{\begin{array}{ll}
3x-y=5 & \\
-4x+y=-6 &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
x-5y=-13 & \\
2x-3y=-5 &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
5x+6y=26 & \\
4x-12y=4 &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
-2a+b=12 & \\
-3a-4b=7 &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
-2a+10–b=0 & \\
19b=-30+2a &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
\frac{7}{2}a–b=11 & \\
-4a+\frac{3}{4}b=-\frac{11}{2} &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
-\frac{9}{2}x=2y+\frac{5}{8} & \\
\frac{9}{5}x+\frac{2}{5}y=\frac{11}{20} &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
3y–5+2x–y=\frac{7+x}{5} & \\
\frac{5y–7x}{2}+5y=9–\frac{4x–3}{2} &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
2x+y+4=0 &\\
\frac{2y–x}{5}–\frac{2}{5}=x–\frac{3x+3y}{3} &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
4x–y–\frac{3}{2}=0 & \\
\frac{1}{2}(y+1)–\frac{5}{12}=\frac{1}{3}(2x–1) &
\end{array}\right.\)
* \(\left\{\begin{array}{ll}
y+1=3(y–x) \\
6(x–2y)+1+8y=0
\end{array}\right.\)
Libellés:
Correction
Corrigées
exercice
Le Mathématicien
manuel scolaire
Math
Mathématiques
Systèmes de deux équations à deux inconnues
Aucun commentaire: